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Microservice architecture has revolutionized enterprise software, providing scalability and flexibility by
decomposing applications into loosely coupled services. However, this paradigm shift introduces unique
challenges for pointer analysis, a foundational static analysis crucial for supporting various client analyses.
Existing fundamental analyses, primarily designed for monolithic enterprise applications, fall short in handling
complex service communications—such as remote procedure call and message-based communication—and
essential programming paradigms, like dependency injection and web endpoint configuration. This paper
introduces Micans, the first pointer analysis specifically crafted to address these challenges in microservice
systems, capable of constructing comprehensive value flows across services. We extensively evaluated Micans
on real-world benchmarks from multiple domains, focusing on its effectiveness in resolving service communi-
cations, constructing essential program information like call graphs, and supporting client analyses such as
taint analysis. Micans consistently and significantly outperforms state-of-the-art approaches, demonstrating
its capacity to handle complex cross-service communications and diverse programming paradigms. These
results highlight Micans’ potential as a robust foundational analysis, advancing static analysis capabilities to
meet the complexities of modern microservices.
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1 Introduction

In the rapidly evolving software landscape, microservice has emerged as a leading practice, designed
to accommodate the ever-increasing complexity of modern Java enterprise systems [JetBrains 2023].
By decomposing traditional monolithic applications into a collection of small, loosely coupled
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services, the microservices enhance scalability, flexibility, and modularity [Fowler and Lewis 2014].
Many successful companies like Uber, Twitter, and Alibaba have adopted microservices to improve
their agility and handle growing demands [Jackson 2022; Luo et al. 2021; Uber 2022].

In real-world enterprise practices, while the loosely coupled nature of microservice systems offers
clear advantages, it also introduces complexity due to increased cross-process communications.
Interactions between different modules within a large monolithic enterprise application, which
were originally achieved through in-process method calls, are now orchestrated as cross-process
communications between various small services, using Remote Procedure Call (RPC) and Message-
based Communication (MBC). In such scenarios, a service typically relies on various other services
developed by different teams or individuals. As a result, the developer invoking these services may
not have detailed knowledge of their implementations. This lack of transparency poses challenges
in achieving a comprehensive understanding of the entire system, which is crucial for tasks such
as optimization, debugging, and vulnerability detection within the microservice systems.

Static analysis is widely recognized for providing information for understanding program behav-
ior, greatly facilitating tasks like optimization, debugging, and vulnerability detection [Arzt et al.
2014; Grech and Smaragdakis 2017; Li et al. 2016; Toman and Grossman 2019; Zhang et al. 2014].
Pointer analysis, one of the most fundamental static analyses upon which virtually all others are
built [Smaragdakis and Balatsouras 2015], computes the objects that each variable in the program
may point to, enabling the derivation of information such as value flows and call graphs essential
for various client analyses.

However, conducting pointer analysis for microservice systems is a complex task, as illustrated
in Fig. 1. Specifically, service communication mechanisms, such as RPC and MBC, set each service
apart from traditional monolithic applications, introducing unique challenges for pointer analysis.
Moreover, effectively addressing these mechanisms also requires consideration of traditionally
examined language features (e.g., reflection and native code) and various programming paradigms
crucial to enterprise applications, such as dependency injection and web endpoint configuration,
which remain underexplored in the existing literature. Additionally, these aspects are interconnected,
meaning inadequate handling of one can adversely affect others. For example, insufficient analysis
of service communications can lead to reduced code coverage and a lack of cross-service value
flows, impacting the analysis of internal application code. Conversely, if the application code is
not analyzed correctly, it can hinder the resolution of service communications. To the best of
our knowledge, there is currently no pointer analysis algorithm capable of adequately addressing
the complex features inherent in microservice systems. Furthermore, the development of such an
algorithm that effectively balances soundness, precision, and efficiency in real-world microservice
systems is even more challenging.

To date, several static analysis clients have been developed for microservice systems. However,
unlike whole-program pointer analysis, which computes comprehensive foundational information
such as value flows and call graphs for various potential clients, these clients employ different
methodologies to address specific tasks, such as security analysis [Wang et al. 2020; Zhong et al.
2023] and code smell detection [Walker et al. 2020]. Additionally, they offer highly limited ca-
pabilities in resolving critical framework features of microservice systems, such as RPC, MBC,
and dependency injection. Turning to pointer analysis, existing approaches (JackEE [Antoniadis
et al. 2020] and Jasmine [Chen et al. 2022]) designed for enterprise applications [Oracle 2021] can
comprehensively resolve language features like reflection and native code and handle programming
paradigms in sophisticated frameworks like Spring Framework [Johnson et al. 2023a]. However,
they cannot address service communications in microservice systems and fall short in managing
the intricate value flows arising from complex usage scenarios involving dependency injection
and web endpoint configuration. In this work, we introduce Micans, the first pointer analysis
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Fig. 1. Pointer Analysis Perspective for Microservice Systems

specifically for microservice systems. Micans enables the analysis of complex service communi-
cation mechanisms that are intricately interwoven with advanced programming paradigms used
in enterprise applications, effectively balancing soundness, precision, and efficiency in analyzing
real-world microservice systems.

Specifically, in this work, we make the following contributions.
• We introduce Micans, the first pointer analysis for microservice systems, capable of constructing

comprehensive foundational information such as value flows and call graphs.
• We formalize Micans by defining pointer analysis rules that cover critical service communication

mechanisms, including RPC and MBC, which are widely adopted in microservice systems.
• We provide a comprehensive real-world open-source production benchmark suite, encompassing

ten microservice systems across diverse business scenarios. We meticulously containerized these
systems and provided additional test drivers, comprising over 4,000 lines of code for service
orchestration and test scripts, facilitating quick deployment and promoting coverage of diverse
microservice behaviors, which we believe will be useful for future research.

• We extensively evaluated Micans on real-world benchmarks across multiple domains, focusing
on its effectiveness in resolving service communications, constructing foundational program
information, such as call graphs, and supporting clients like taint analysis. Micans consistently
outperformed state-of-the-art tools, demonstrating its capability to handle complex cross-service
communications and diverse programming paradigms. For example, Micans achieved an average
recall rate of 85.53% in resolving call graph edges, compared to 53.85% for JackEE and 56.02% for
Jasmine. For certain benchmarks such as onemall, this means that Micans resolved an additional
62,357 real call graph edges that were missed by both other analyses. Moreover, Micans identified
all 335 taint flows, surpassing JackEE’s 260 and Jasmine’s 70, and effectively capturing intricate
taint flows that the other tools could not resolve.

• We built Micans on top of Tai-e [Tan and Li 2023], a state-of-the-art static analysis framework
for Java, and have fully open-sourced both Micans and the real-world microservice benchmarks
as part of a publicly accessible artifact (see Section on Data Availability). Micans will also be
released and actively maintained on Tai-e.

2 Motivating Example

In this section, we use an example (simplified from real-world microservice systems) to briefly
introduce key concepts and motivate our methodology. First, we describe the dynamic behavior of

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA023. Publication date: July 2025.

https://github.com/pascal-lab/Tai-e


ISSTA023:4 Teng Zhang, Yufei Liang, Ganlin Li, Tian Tan, Chang Xu, and Yue Li

microservice systems in this example. Next, we highlight the challenges traditional pointer analysis
faces in such systems. Finally, we summarize how our approach addresses these challenges.

Overview. Microservices communicate through Remote Procedure Call (RPC) and Message-based
Communication (MBC), often utilizing advanced programming paradigms, especially Dependency
Injection (DI) and Web Endpoint Configuration (WEC), to improve flexibility and configurability in
practical development. Like RPC and MBC, DI and WEC are supported by frameworks that automate
their integration and usage. Specifically, DI handles the automatic instantiation and injection of
objects at runtime, ensuring that the required dependencies are supplied to the appropriate fields and
variables. WEC standardizes the configuration of methods that handle specific network requests.

Fig. 2 presents a simplified code snippet derived from real-world code, demonstrating a sensitive
information leak. It shows the combined use of RPC, MBC, DI, and WEC, using OpenFeign, Rab-
bitMQ, Spring IoC, and Spring Web, which are among the most popular implementations [Froeder
et al. 2021; Johnson et al. 2023b,c; Klishin et al. 2021].

In this example, three microservices—App1 (lines 1–10), App2 (lines 11–19), and App3 (lines
20–32)—communicate, forming the information flow from App1 to App2 via RPC (the invocation of
c.foo() at line 5), and from App2 to App3 via MBC (the invocation of rt.convertAndSend() at
line 18), as indicated by the arrows in Fig. 2. During this process, sensitive information (the user’s
password ("password") at line 5 in App1) is propagated and eventually leaked at line 31 in App3.

In the following, we provide a detailed explanation of the two RPC and MBC calls involved in this
leak, and then explain why traditional pointer analysis struggles to address these communications,
leading security analysis clients to potentially miss the information leak at line 31.

Dynamic Behavior in RPC and MBC Invocations. We examine the RPC invocation at line 5 and
the MBC invocation at line 18 to elucidate their dynamic behaviors during execution.

Remote Procedure Call (RPC). RPC is a communication protocol that allows one application
to invoke a method in another application as if it were a local method, despite the target method
being executed on a remote server. This abstraction enables seamless service communications in
microservice systems. However, to enable remote invocation, certain mechanisms, such as stub
objects, are necessary to handle the complexities of network communication.

In an RPC, the caller uses a stub object to invoke a method on the receiver (the RPC target)
via a network request, enabling communication between two applications. The stub serves as
a local proxy for the remote method, abstracting network transmission and request formatting.
This process includes generating the stub, sending the network request, and invoking the receiver
method. We demonstrate this with the invocation c.foo("user","password") (line 5).
• Stub Object Creation (Fig. 2(a)). At the RPC callsite c.foo() (line 5), c refers to a stub object

generated and managed by DI. The stub object enables the caller to interact with the remote
method as if it were local, handling the complexities of remote communication behind the
scenes, such as marshaling parameters, sending network requests, and receiving responses.
Specifically, when DI uses reflection to inspect the App2Client interface and finds it annotated
with @FeignClient (line 7), it creates a dynamic proxy object (i.e., the stub) for the interface.
This stub is then stored in the DI container, which manages objects created by DI. When DI
detects that the field c is annotated with @Autowired (line 3), it retrieves the stub object from
the DI container using type matching and injects it into the field c via reflection.

• Request Sending (Fig. 2(a)(b)). When App1’s c.foo("user","password") is invoked, it triggers
the foo method on the stub object, which constructs and sends an HTTP request to App2 in ac-
cordance with WEC annotations. Specifically, the @FeignClient("App2") annotation identifies
the target application (App2), the @GetMapping("/app2/foo") annotation (line 8) specifies the
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// application.name: App1
@Service class App1Service {

@Autowired App2Client c; //points to o7
void main() {
c.foo("user", "password");

}}
@FeignClient("App2") interface App2Client {//o7

@GetMapping("/app2/foo") void foo(
@RequestParam String a1, @RequestParam String a2);

}
// application.name: App2
@Controller class App2Controller {
@Autowired RabbitTemplate rt;
@GetMapping("/app2/foo") void foo(

@RequestParam("a1") String b1,
@RequestParam("a2") String b2) {

User u = new User(b1, b2); //o17
rt.convertAndSend("e1", "user.hello", u);

}}
// application.name: App3
@Configuration class App3Config {

@Bean Exchange e1() {return new TopicExchange("e1");}
@Bean Queue q1() {return new Queue("q1");}
@Bean Binding b1(Exchange e1, Queue q1) {

return new Binding(q1.getName(), QUEUE,
e1.getName(), "user.*", null);

}//...more Exchange, Queue and Binding definition(s)
}
@Service class App3Service {
@RabbitListener(queues="q1") void hello(User user) {

System.out.println(user.getPassword());//leak secret
}}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

app1Service   = // from DI
app1Service.c = /* from DI, 
i.e., new App2Client$Proxy */
a1 = "user", a2 = "password"
app1Service.c.foo(a1, a2)

(a) Fig: The HTTP request sending

"http://<ip>:<port>/app2/foo?
a1=user&a2=password"

app2Controller   = // from DI
app2Controller.rt= // from DI
b1 = “user", b2 = "password"
app2Controller.foo(b1, b2)

(c) Fig: The HTTP request receiving

GET

Exchange   = "e1"
RoutingKey = "user.hello"
Payload = u // o17

app3Service = // from DI
user = // o17, from MBC
app3Service.hello(user)

Exchange RoutingKey Queue
e1 user.* q1
e1 abc.* q2
e2 def.* q3
... ... ...

(e) Table: The routing table rules 

(d) Fig: The message sending

(f) Fig: The message receiving 

(b) Fig: The HTTP request URL

Fig. 2. A code example (left) illustrating RPC, MBC, DI, and WEC, with a runtime behavior description (right),

presented in simplified Java code (excluding variable declarations) and highlighted in blue.

request path, and the @RequestParam annotations (line 9) map method parameters to request
parameters. The resulting HTTP request is “http://<ip>:<port>/app2/foo?a1=user&a2=password”,
where <ip> and <port> refer to App2’s actual network address.

• Receiver Method Invocation (Fig. 2(c)). The receiver method for the HTTP request is foo in App2
(line 14), as its path is specified by the WEC annotation @GetMapping("/app2/foo"), which
matches the request path. The WEC mechanism routes the request to foo. Additionally, the
@RequestParam("a1") and @RequestParam("a2") annotations bind the request parameters
"user" and "password" to the method parameters b1 and b2, respectively.
Message-based Communication (MBC). MBC is an asynchronous communication pattern

where services exchange information by sending messages through a messaging system. Unlike
RPC, which directly invokes remote methods, MBC decouples services by routing messages through
exchanges and queues, allowing for more flexible communication between microservices. Messages
are sent to an exchange, routed based on predefined rules, and received by a listening service.

At an MBC callsite, the sender sends a message containing routing information, which is directed
to the receiver method according to the routing table, a set of predefined routing rules. This process
involves sending the message, creating the routing table, and invoking the receiver method. We
illustrate this with the invocation rt.convertAndSend("e1","user.hello",u) (line 18).
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• Message Sending (Fig. 2(d)). At line 13, the field rt, injected by DI via @Autowired, is of type
RabbitTemplate, whose method convertAndSend sends messages. The message at line 18 is
constructed from the exchange name "e1", the routing key "user.hello", and the payload o17.
The exchange name and routing key determine the routing of the message, as explained below.

• Routing Table Creation (Fig. 2(e)). In MBC, routing table maps an exchange name and routing key
to a message queue. This is achieved through a Binding object, created at line 25, which links
the exchange "e1", the routing key "user.*", and the queue "q1". The Exchange and Queue
objects are instantiated and injected by DI (lines 22–23), forming the routing table (Fig. 2(e)).

• Receiver Method Invocation (Fig. 2(f)). After routing, the message is sent to the queue(s) matching
the exchange name and routing key. In this case, the message with exchange "e1" and routing key
"user.hello" is routed to queue "q1" due to the wildcard match "user.*" in the routing table
(Fig. 2(e)). The receiver method hello in App3 listens to this queue (@RabbitListener(queues=
"q1") at line 30), and upon receiving the message, passes the payload o17 to the parameter user.
At line 31, the user’s password is printed, causing a sensitive information leak.

Challenges for Traditional Pointer Analysis. The main challenges posed by microservice systems
for pointer analysis stem from their complexity, particularly the dynamic nature of various mecha-
nisms and their interdependencies. These mechanisms rely heavily on annotations, configuration,
reflection, and dynamic proxy to customize runtime behavior, which undermines the effectiveness
of pointer analysis. For example, the RPC mechanism dynamically generates proxy objects that
transform local method calls into remote procedure invocations. In App1 (line 5), the method call
c.foo() does not resolve to a local method but to a dynamically generated method that triggers
an HTTP request to App2. Furthermore, these mechanisms are often interwoven. For instance, the
dispatch and targeting of RPC requests depend on metadata from WEC annotations (e.g., HTTP
paths), while MBC message routing is based on routing table rules constructed through DI. If the
analysis of one mechanism is incomplete or inaccurate, it can impact the analysis of others.

Current state-of-the-art tools for analyzing enterprise applications, such as JackEE and Jas-
mine, are primarily designed for monolithic applications and are ineffective at analyzing complex
microservice systems like the example presented. These tools have two major limitations: they
completely overlook the intricate and diverse communication mechanisms in microservices, which
involve various types of network requests, and they have limited capabilities in handling DI and WEC,
failing to address their usage in microservice systems. Each limitation is discussed in detail below.

First, with respect to microservice communication mechanisms, existing tools fail to capture
value and control flows across services. For example, when analyzing the RPC call at line 5, they
are unable to detect the remote invocation and the passing of arguments to the target method foo
in App2 (line 14). A similar limitation arises when analyzing the MBC call at line 18.

Second, these tools are inadequate in their analysis of DI and WEC, failing to properly account
for their usage in microservice systems. For instance, their handling of DI is incomplete, as they
overlook object injections for methods annotated with @Bean, a common pattern in DI. This
shortcoming is evident in the construction of the Binding object at line 24 in Fig. 2, where JackEE
and Jasmine ignore the objects created at lines 22 and 23. Consequently, the Binding object misses
the values "e1" and "q1", which are crucial for constructing the routing rules.

These combined limitations prevent current tools from detecting the information leak in Fig. 2.

Our Solution. In this work, we propose Micans, the first pointer analysis designed for mi-
croservice systems. Micans provides a comprehensive analysis of the entire microservice system,
effectively handling complex service communication mechanisms and offering thorough support for
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Fig. 3. The overview of Micans.

advanced programming paradigms. It integrates these features to perform on-the-fly pointer analy-
sis across the entire microservice system. As a result, Micans is capable of thoroughly analyzing
the system’s behavior and detecting issues such as the information leak in the example.

3 Methodology

Fig. 3 provides an overview of Micans, which takes microservice programs and configuration files
as input and produces a call graph, points-to relations, and the resolved service communications
(RPC and MBC) within the programs. Micans consists of three key components: a programming
paradigm analyzer, a service communication analyzer, and a pointer analysis kernel. The two
analyzers interact with the pointer analysis kernel on the fly. The programming paradigm analyzer
handles DI and WEC, identifying entry methods and providing the corresponding points-to relations
for the pointer analysis kernel. Using this information, the pointer analysis kernel analyzes each
service, building the intra-service call graph and points-to relations while identifying RPC and MBC
callsites. The service communication analyzer then resolves these callsites to construct cross-service
call graph edges, which are fed back into the pointer analysis kernel.

The key innovation of Micans lies in its design. First, the two analyzers are purpose-built to
handle DI, WEC, RPC, and MBC, drawing on developer experience and our extensive study to
cover the most common and essential features in microservice systems. Second, the analyzers’
inputs and outputs are expressed in terms of points-to relations and call graph edges, enabling
seamless interaction with the pointer analysis kernel. This design allows Micans to manage the
complex interdependencies between these features, resulting in a more complete call graph. This
comprehensive call graph provides a stronger foundation for downstream analysis clients, such as
security analysis, for microservice systems.

Below, we present the programming paradigm and service communication analyzers in Micans.
These analyzers are complex due to the intricate microservice features they address; however, given
space limitations, we focus only on their most essential aspects.

3.1 Programming Paradigm Analyzer

3.1.1 DI Analysis. As described in Section 2, DI is a mechanism that automatically manages
the creation and injection of specific objects at runtime. This process is highly dynamic, as DI
frameworks typically rely on reflection, annotations, and configuration files, posing significant
challenges for pointer analysis. To effectively handle DI, our DI analysis does not analyze the DI
framework code directly; instead, it models the behaviors and side effects of the DI mechanism.
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This analysis involves two main tasks: (1) creating DI objects and (2) injecting these created objects
into the appropriate fields and variables (referred to as DI pointers).

DI Object Creation. DI frameworks typically create objects specified by annotations, either on
the methods that instantiate new objects (e.g., methods annotated with @Bean) or on the classes of
objects to be created (e.g., classes annotated with @Service and @Controller). Fig. 2 illustrates
both approaches. Micans scans the program to identify these annotated methods and classes. For
annotated methods, Micans analyzes them to create the required objects; for annotated classes,
Micans generates mock objects. All DI objects are then stored in a DI container within Micans,
simulating the DI container created at runtime.

DI Object Injection. The DI objects created during analysis need to be injected into the corre-
sponding DI pointers. Micans first scans the program to identify the DI pointers, including fields
annotated with @Autowired, parameters of methods annotated with @Bean, and other injection
points supported by the DI frameworks. Micans then selects the appropriate DI objects from the DI
container based on the constraints defined by the DI pointers (for instance, using the @Qualifier
annotation to specify the id of DI object) and adds them to points-to sets of the DI pointers. For
instance, at line 24 of Fig. 2, Micans adds the objects created at lines 22 and 23 into points-to sets
of parameters e1 and q1, respectively, accurately modeling the behavior of DI object injection.

3.1.2 WEC Analysis. The WEC mechanism determines which methods are invoked in response to
network requests. These methods, known as receiver methods or web endpoints, process incoming
requests but typically lack explicit callsites in the program, as they are invoked by the WEC
framework. To analyze these receiver methods, WEC analysis identifies them, marks them as entry
methods, and notifies the pointer analysis kernel so they can be reached and analyzed.

Additionally, network requests often carry metadata that determines request routing. WEC
analysis collects this request metadata and associates it with the relevant receiver methods, which
will be utilized by the service communication analyzer as discussed in Section 3.2.

3.2 Service Communication Analyzer

3.2.1 RPC Analysis. RPC Analysis constructs cross-service call graph edges and manages argument
passing for RPC calls. It consists of two components: the Stub Object Creator, which generates stub
objects, and the RPC Resolver, which models both the network request transmission and the target
method invocation at the RPC callsite. We illustrate these components using the RPC example in
Fig. 2, based on OpenFeign [Froeder et al. 2021] (though the same principles apply to other RPC
frameworks).

Stub Object Creator. The Stub Object Creator identifies stub classes (e.g., classes annotated with
@FeignClient) and generates stub objects that act as proxies created by the RPC framework, helping
RPC analysis recognize RPC calls where the receiver is a stub object. During stub creation, the
Stub Object Creator also collects network request metadata specified in the stub class annotations,
maps it to methods within the class, and associates this mapping with the created stub object. This
mapping is later used by the RPC Resolver. For example, when analyzing the stub class at line 7 in
Fig. 2, the Stub Object Creator generates a stub object and associates request metadata, such as
"App2" and "/app2/foo" from the annotations on method foo, with foo. These generated stub
objects are then managed in the DI container and injected into the appropriate pointers.

RPC Resolver. The RPC Resolver is activated when Micans identifies an RPC. It uses the network
request metadata associated with the stub object, along with endpoint information (e.g., request
metadata) provided by WEC analysis, to identify the matching receiver method for the RPC. Once the
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RPC Resolver finds a receiver method𝑚 for a callsite 𝑐 , it constructs a cross-service call graph edge
from 𝑐 to𝑚, and propagates the points-to sets of 𝑐’s arguments to the corresponding parameters of
𝑚. For example, for the callsite c.foo in App1Service (line 5 of Fig. 2), the RPC Resolver identifies
the target as the foo method in App2Controller (line 14) by matching request metadata from the
stub object (line 8) with the receiver method’s metadata (line 14). It then constructs the call graph
edge from c.foo to foo and propagates the arguments "user" and "password".

3.2.2 MBC Analysis. MBC Analysis, similar to RPC Analysis, handles MBC invocations to construct
cross-service call graph edges and manage points-to relations for message routing. It consists of two
components: the Routing Table Creator, which establishes routing rules in the routing table, and the
MBC Resolver, which models message routing and receiver method invocation at the MBC callsite.
We illustrate these components using the MBC example in Fig. 2, based on RabbitMQ [Klishin et al.
2021] (though the same principles apply to other MBC frameworks).

Routing Table Creator. The Routing Table Creator collects routing information from the program
and builds the routing table by modeling the behavior of the MBC framework. In RabbitMQ, each
routing rule consists of three string values: exchange name, routing key, and queue name, derived
from the fields of a Binding object. The Routing Table Creator retrieves points-to information for
these fields from the pointer analysis kernel to establish routing rules. In practice, the exchange
and queue names used in Binding objects are often sourced from fields in Exchange and Queue
objects (e.g., lines 25–26), with DI analysis and the pointer analysis kernel managing their creation
and passing. Since multiple Binding objects may be created at the same allocation site, Micans
employs context sensitivity for these objects to differentiate their contents for better precision.

MBC Resolver. The MBC Resolver is activated when Micans identifies an MBC callsite (for
RabbitMQ, this is the convertAndSend method on a RabbitTemplate object). The MBC Resolver
constructs messages from the callsite arguments, and models message routing. Each message
includes the exchange name, routing key, and payload. Using the routing table, the MBC Resolver
identifies the target message queue and all associated receiver methods, which are marked by the
@RabbitListener annotation. The MBC Resolver then establishes call graph edges from the MBC
callsite to these receiver methods and propagates message payloads to them. For example, for the
callsite rt.convertAndSend in App2Controller (line 18 in Fig. 2), the MBC Resolver identifies
the target as the hello method in App3Service (line 30) by matching the message’s exchange
name "e1" and routing key "user.hello" with the first rule in the routing table (Fig. 2(e)). Since
multiple messages may be sent from the same MBC callsite, Micans applies context sensitivity at
the callsite to distinguish different messages for better precision.

4 Formalism

We formalize Micans as introduced in Section 3. The analysis logic of Micans is complex, reflecting
the intricate microservice features it handles. Due to space constraints, we give only the core
rules of its two new components, the programming paradigm analyzer (Section 4.1) and service
communication analyzer (Section 4.2), in a context-insensitive form. The implementation, however,
employs a context-sensitive pointer analysis [Ma et al. 2023; Smaragdakis and Balatsouras 2015]
for enhanced precision. Additionally, we present our rules with several helper functions, briefly
describing their inputs and outputs while omitting internal details due to space. Micans has been
released as open source, providing full transparency and accessibility to all implementation details.

Fig. 4 presents the domains and notations used in this section, most of which are self-explanatory.
Additionally, we define two special objects: DI object 𝑜DI and RPC stub object 𝑜stub, as introduced
in Sections 3.1.1 and 3.2.1. Here,𝑚ret and𝑚𝑝0 represent the return and this variable of method𝑚,
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instruction labels 𝑖, 𝑗 ∈ L variables 𝑥,𝑦,𝑚ret, 𝑎𝑘 ,𝑚𝑝𝑘 ∈ V objects 𝑜, 𝑜DI, 𝑜stub ∈ O
class types 𝑡 ∈ T methods 𝑚 ∈ M fields 𝑓 ∈ F
pointers 𝑥, 𝑜.𝑓 ∈ P = V ∪ (O × F) points-to relations 𝑝𝑡 : P → P(O)

Fig. 4. Domains and notations used in formalism.

𝑡 ∈ �𝐷𝐼𝐶𝑙𝑎𝑠𝑠𝑒𝑠 𝑚 = 𝑔𝑒𝑡𝐷𝐼𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 (𝑡 )
𝑚𝑜𝑐𝑘𝐷𝐼 (𝑡 ) ∈ 𝐷𝐼𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟

𝑚 ∈ 𝐼𝑛 𝑗𝑒𝑐𝑡𝑒𝑑𝑀𝑒𝑡ℎ𝑜𝑑𝑠

[DiCre-Clz]
𝑚 ∈ �𝐷𝐼𝑀𝑒𝑡ℎ𝑜𝑑𝑠 𝑜DI ∈ 𝑝𝑡 (𝑚ret )

𝑜DI ∈ 𝐷𝐼𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟

𝑚 ∈ 𝐼𝑛 𝑗𝑒𝑐𝑡𝑒𝑑𝑀𝑒𝑡ℎ𝑜𝑑𝑠

[DiCre-Meth]

𝑜DI ∈ 𝐷𝐼𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑡 = 𝑡𝑦𝑝𝑒 (𝑜DI )
𝑓 ∈ 𝑔𝑒𝑡𝐼𝑛 𝑗𝑒𝑐𝑡𝑒𝑑𝐹𝑖𝑒𝑙𝑑𝑠 (𝑡 )

𝑜′DI ∈ 𝑔𝑒𝑡𝐷𝐼𝑂𝑏𝑗𝑠 (𝑓 )
𝑜′DI ∈ 𝑝𝑡 (𝑜DI .𝑓 )

[DiInj-Field]

𝑚 ∈ 𝐼𝑛 𝑗𝑒𝑐𝑡𝑒𝑑𝑀𝑒𝑡ℎ𝑜𝑑𝑠

0 ≤ 𝑘 ≤ 𝑛

𝑜DI ∈ 𝑔𝑒𝑡𝐷𝐼𝑂𝑏𝑗𝑠 (𝑚𝑝𝑘 )
𝑜DI ∈ 𝑝𝑡 (𝑚𝑝𝑘 )

[DiInj-Param]

Fig. 5. Rules for DI analysis (DI object creation and injection).

while 𝑎𝑘 and𝑚𝑝𝑘 represent the k-th (k > 0) argument and parameter of a method call. A symbol
with a hat (e.g., 𝑆) indicates a set of annotated or configured program elements, such as classes.

4.1 Programming Paradigm Analyzer

We formalize the programming paradigm analyzer introduced in Section 3.1. WEC analysis, which
primarily identifies network receiver methods and gathers metadata to produce𝑊𝑒𝑏𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠
as input for RPC analysis, is relatively straightforward. For brevity, we omit the rules for WEC
analysis and present only the rules for DI analysis below.

Fig. 5 formalizes the DI analysis introduced in Section 3.1.1. To facilitate this analysis, we define
two sets: 𝐷𝐼𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 , which holds DI objects managed by the analysis, and 𝐼𝑛 𝑗𝑒𝑐𝑡𝑒𝑑𝑀𝑒𝑡ℎ𝑜𝑑𝑠 ,
which contains methods with parameters requiring injection of DI objects.

DI Object Creation. Rules [DiCre-Clz] and [DiCre-Meth] specify how Micans creates and manages
DI objects for classes ( �𝐷𝐼𝐶𝑙𝑎𝑠𝑠𝑒𝑠) and methods ( �𝐷𝐼𝑀𝑒𝑡ℎ𝑜𝑑𝑠) based on annotations (e.g., @Service
for classes and @Bean for methods) and configuration settings. Rule [DiCre-Clz] uses helper functions
𝑚𝑜𝑐𝑘𝐷𝐼 (𝑡) to create a mock object of each class 𝑡 in �𝐷𝐼𝐶𝑙𝑎𝑠𝑠𝑒𝑠 and 𝑔𝑒𝑡𝐷𝐼𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 (𝑡) to retrieve
𝑡 ’s proper constructor, such as the primary or annotated (e.g., by @Autowired) constructor. Rule
[DiCre-Meth] collects objects returned by methods in �𝐷𝐼𝑀𝑒𝑡ℎ𝑜𝑑𝑠 as DI objects. These DI objects
are then added to the 𝐷𝐼𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 . Additionally, Micans includes DI-related methods, such as
annotated methods and constructors requiring injection, in 𝐼𝑛 𝑗𝑒𝑐𝑡𝑒𝑑𝑀𝑒𝑡ℎ𝑜𝑑𝑠 , which are also added
to the set of reachable methods in the pointer analysis kernel (omitted here for brevity).

DI Object Injection. Rules [DiInj-Field] and [DiInj-Param] specify how Micans injects DI objects
into fields and method parameters, respectively. In [DiInj-Field], Micans scans all DI objects in
the container to identify fields requiring injection. Key helper functions support this process:
𝑔𝑒𝑡𝐼𝑛 𝑗𝑒𝑐𝑡𝑒𝑑𝐹𝑖𝑒𝑙𝑑𝑠 (𝑡) retrieves annotated fields in class 𝑡 (e.g., fields annotated with @Autowired or
@Resource); 𝑡𝑦𝑝𝑒 () retrieves an object’s type; and𝑔𝑒𝑡𝐷𝐼𝑂𝑏𝑗𝑠 () selects matching DI objects from the
container based on the declaring type of the input element (e.g., a field or variable). In [DiInj-Param],
Micans injects DI objects into the appropriate method parameters, including the this variable.

4.2 Service Communication Analyzer

4.2.1 RPC Analysis. Fig. 6 present the rules for RPC analysis as introduced in Section 3.2.1. We
define𝑀𝑒𝑡𝑎𝑀𝑎𝑝𝑝𝑖𝑛𝑔, which maps each stub object to pairs of methods and their associated request
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𝑡 ∈ �𝑆𝑡𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑒𝑠 𝑚 is declared in 𝑡 𝑜stub =𝑚𝑜𝑐𝑘𝑆𝑡𝑢𝑏 (𝑡 )
𝑜stub ∈ 𝐷𝐼𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 ⟨𝑚,𝑏𝑢𝑖𝑙𝑑 (𝑚, 𝑡 ) ⟩ ∈ 𝑀𝑒𝑡𝑎𝑀𝑎𝑝𝑝𝑖𝑛𝑔 (𝑜stub )

[StubObjCreation]

𝑖 : 𝑦 = 𝑥.𝑐 (𝑎1, ..., 𝑎𝑛 ) 𝑜stub ∈ 𝑝𝑡 (𝑥 ) 𝑚 = 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ (𝑜stub, 𝑐 )
⟨𝑚,𝑚𝑒𝑡𝑎⟩ ∈ 𝑀𝑒𝑡𝑎𝑀𝑎𝑝𝑝𝑖𝑛𝑔 (𝑜stub ) ⟨𝑚′,𝑚𝑒𝑡𝑎′ ⟩ ∈𝑊𝑒𝑏𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠 𝑚𝑎𝑡𝑐ℎ (𝑚𝑒𝑡𝑎,𝑚𝑒𝑡𝑎′ )

⟨𝑖,𝑚,𝑚𝑒𝑡𝑎,𝑚′,𝑚𝑒𝑡𝑎′ ⟩ ∈ 𝑅𝑃𝐶𝐸𝑑𝑔𝑒𝑠
[RpcResolution-1]

𝑖 : 𝑦 = 𝑥.𝑐 (𝑎1, ..., 𝑎𝑛 ) ⟨𝑖,𝑚,𝑚𝑒𝑡𝑎,𝑚′,𝑚𝑒𝑡𝑎′ ⟩ ∈ 𝑅𝑃𝐶𝐸𝑑𝑔𝑒𝑠

⟨𝑎 𝑗 ,𝑚
′
𝑝𝑘

⟩ ∈ 𝑔𝑒𝑡𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 (𝑚𝑒𝑡𝑎,𝑚𝑒𝑡𝑎′ ) 𝑜 ∈ 𝑝𝑡 (𝑎 𝑗 ) 𝑜′ ∈ 𝑝𝑡 (𝑚′
ret )

𝑔𝑒𝑡𝐷𝐼𝑂𝑏𝑗𝑠 (𝑚′
𝑝0 ) ∈ 𝑝𝑡 (𝑚′

𝑝0 ) 𝑜 ∈ 𝑝𝑡 (𝑚′
𝑝𝑘

) 𝑜′ ∈ 𝑝𝑡 (𝑦)
[RpcResolution-2]

Fig. 6. Rules for RPC analysis.

metadata. Additionally, 𝑅𝑃𝐶𝐸𝑑𝑔𝑒𝑠 consists of tuples that include an RPC callsite, the local method
(on the stub object), the remote receiver method (target method), and the metadata linking them.

Stub Object Creation. Rule [StubObjCreation] specifies how Micans creates stub objects and
gathers request metadata from stub class annotations. For each stub class (e.g., annotated with
@FeignClient), Micans creates a stub object 𝑜stub, storing it in 𝐷𝐼𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 for injection into
appropriate variables. Key helper functions include𝑚𝑜𝑐𝑘𝑆𝑡𝑢𝑏, which generates a mock stub object
of type 𝑡 , and 𝑏𝑢𝑖𝑙𝑑 (𝑚, 𝑡), which constructs request metadata for method𝑚 in stub class 𝑡 , including
request type, path, and parameters. [StubObjCreation] also generates request data mappings for 𝑜stub.

RPC Resolution. Rules [RpcResolution-1] and [RpcResolution-2] define how Micans identifies and
resolves RPC calls to construct cross-service call graph edges and manage argument passing. In
[RpcResolution-1], Micans identifies the RPC callsites (where the receiver variable points to a stub
object 𝑜stub), and uses the request metadata from 𝑀𝑒𝑡𝑎𝑀𝑎𝑝𝑝𝑖𝑛𝑔, along with the web endpoints
(𝑊𝑒𝑏𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠) provided by WEC analysis, to locate the matching receiver method and construct
an RPC edge, stored in 𝑅𝑃𝐶𝐸𝑑𝑔𝑒𝑠 . The helper function 𝑚𝑎𝑡𝑐ℎ() determines whether the two
given request metadata match by comparing their request types and paths. Rule [RpcResolution-
2] manages argument and return value passing along the constructed RPC edges. The function
𝑔𝑒𝑡𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑚𝑒𝑡𝑎,𝑚𝑒𝑡𝑎′) establishes the correspondence between RPC callsite arguments and
receiver method parameters, indicating that objects pointed to by argument 𝑎 𝑗 at the callsite flow
to parameter𝑚𝑝𝑘 in the receiver method.

4.2.2 MBC Analysis. Fig. 7 present the rules for MBC analysis as introduced in Section 3.2.2.

Routing Table Creation. Rule [RoutingTableCreation] specifies how Micans constructs routing
table rules based on values collected from the arguments for object creation (e.g., arguments of new
Binding()). The function 𝑔𝑒𝑡𝑆𝑡𝑟 () retrieves the string content from a string object. The collected
strings from parameters ⟨𝑎exch, 𝑎key, 𝑎queue⟩ are stored as a rule in 𝑅𝑜𝑢𝑡𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒 , allowing Micans
to accurately represent and maintain the routing table during analysis.

MBC Resolution. Rule [MbcResolution] defines how Micans identifies and resolves MBC calls, han-
dling argument passing by modeling message-sending behavior. For an MBC call 𝑥 .𝑠𝑒𝑛𝑑 (𝑎exch, 𝑎key,
𝑝𝑎𝑦𝑙𝑜𝑎𝑑1, . . . , 𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑛) (where 𝑠𝑒𝑛𝑑 is a predefined message-sending method), Micans searches
𝑅𝑜𝑢𝑡𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒 for the queue matching the given exchange and routing key. Specifically, the helper
function𝑚𝑎𝑡𝑐ℎ(𝑠𝑡𝑟key, 𝑠𝑡𝑟

′
key) verifies if a message’s routing key 𝑠𝑡𝑟key matches the routing table’s

wildcard routing key 𝑠𝑡𝑟 ′key. Then, using function 𝑙𝑖𝑠𝑡𝑒𝑛(𝑠𝑡𝑟queue), Micans identify receiver methods
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𝑛𝑒𝑤 𝐵𝑖𝑛𝑑𝑖𝑛𝑔 (𝑎queue, 𝑎exch, 𝑎key ) 𝑜q ∈ 𝑝𝑡 (𝑎queue ) 𝑜e ∈ 𝑝𝑡 (𝑎exch ) 𝑜k ∈ 𝑝𝑡 (𝑎key )
𝑠𝑡𝑟queue = 𝑔𝑒𝑡𝑆𝑡𝑟 (𝑜q ) 𝑠𝑡𝑟exch = 𝑔𝑒𝑡𝑆𝑡𝑟 (𝑜e ) 𝑠𝑡𝑟key = 𝑔𝑒𝑡𝑆𝑡𝑟 (𝑜k )

⟨𝑠𝑡𝑟exch, 𝑠𝑡𝑟key, 𝑠𝑡𝑟queue ⟩ ∈ 𝑅𝑜𝑢𝑡𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒
[RoutingTableCreation]

𝑖 : 𝑥.𝑠𝑒𝑛𝑑 (𝑎exch, 𝑎key, 𝑝𝑎𝑦𝑙𝑜𝑎𝑑1, ..., 𝑝𝑎𝑦𝑙𝑜𝑎𝑑n ) 𝑜e ∈ 𝑝𝑡 (𝑎exch ) 𝑜k ∈ 𝑝𝑡 (𝑎key )
𝑠𝑡𝑟exch = 𝑔𝑒𝑡𝑆𝑡𝑟 (𝑜e ) 𝑠𝑡𝑟key = 𝑔𝑒𝑡𝑆𝑡𝑟 (𝑜k ) ⟨𝑠𝑡𝑟exch, 𝑠𝑡𝑟

′
key, 𝑠𝑡𝑟queue ⟩ ∈ 𝑅𝑜𝑢𝑡𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒

𝑚𝑎𝑡𝑐ℎ (𝑠𝑡𝑟key, 𝑠𝑡𝑟
′
key ) 𝑚 ∈ 𝑙𝑖𝑠𝑡𝑒𝑛 (𝑠𝑡𝑟queue ) 1 ≤ 𝑘 ≤ 𝑛 𝑜 ∈ 𝑝𝑡 (𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑘 )

⟨𝑖,𝑚⟩ ∈ 𝑀𝐵𝐶𝐸𝑑𝑔𝑒𝑠 𝑔𝑒𝑡𝐷𝐼𝑂𝑏𝑗𝑠 (𝑚𝑝0 ) ∈ 𝑝𝑡 (𝑚𝑝0 ) 𝑜 ∈ 𝑝𝑡 (𝑚𝑝𝑘 )
[MbcResolution]

Fig. 7. Rules for MBC analysis.

(e.g., methods annotated with @RabbitListener) listening to the queue, passing each 𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑘 to
the corresponding parameter𝑚𝑝𝑘 of these receiver methods.

5 Evaluation

In this section, we investigate the following research questions for evaluating Micans.
RQ1. How effective is Micans in resolving service communication mechanisms (e.g., RPC and

MBC) for real-world microservice systems?
RQ2. Compared to SOTAs, How well does Micans perform in constructing fundamental infor-

mation such as call graph edges and reachable methods for real-world microservice systems?
RQ3. Compared to SOTAs, How well does Micans support analysis clients, e.g., taint analysis?

5.1 Experimental Setup

We have implemented Micans as a stand-alone open-source tool, building on the Tai-e frame-
work [Tan and Li 2023], a state-of-the-art static analysis framework for Java that offers powerful
and highly extensible pointer analysis, which significantly facilitate the development of our analy-
sis. All experiments were conducted in a Docker environment on a machine equipped with two
Intel(R) Xeon(R) Gold 6430 CPUs @ 2.10GHz (32 cores) and 512GB of 4800MT/s RDIMM RAM. All
evaluation-related materials, including source code, binary artifacts, orchestration scripts, and test
scripts, have been made publicly available in the artifact (see Section on Data Availability).

Benchmarks. Preparing a real-world benchmark for microservice systems is a complex and time-
intensive undertaking [Aderaldo et al. 2017]. Successfully deploying these systems necessitates
the coordination of service dependencies, management of configurations, network setup, and data
storage. Even minor configuration errors can lead to instability or service failures, complicating the
deployment process. Furthermore, validating static analysis requires dynamic data from microser-
vice systems. High-quality test drivers that comprehensively cover system behaviors are essential
but also demand a deep understanding of the internal logic of each service and the interactions
among services. Challenges like deployment and test driver creation impede the construction of real-
world benchmarks. Consequently, while existing handcrafted benchmarks [Gan et al. 2019; Zhou
et al. 2018] effectively showcasing basic microservice functionalities, they fall short in capturing
the diversity and complexity of real-world modern microservice scenarios.

As shown in Table 1, we have provided a real-world benchmark consisting of ten popular open-
source microservice systems. The benchmarks average 4.8K stars on platforms like GitHub and
span diverse business domains such as cloud storage, blogging, e-reading, e-commerce, and online
judge. Additionally, we offer substantial program size metrics, with an average of 49.8K lines of
application code and 3.7 million lines of intermediate representation (IR) code (including library
code). We containerized these systems using Docker and crafted test drivers comprising over 4,000
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Table 1. Real-world microservice benchmarks. #App LoC: lines of application code. #Lib Classes (excl. JDK):

number of library classes (excluding JDK). #IR LoC: lines of intermediate representation (IR) code.

Benchmark #Stars Business Type #App LoC #App Classes #Lib Classes
(excl. JDK) #IR LoC

netdisk 1.5k Cloud Drive 26.9k 441 41790 2.35M
xmall 7.2k E-shop 48.1k 257 49419 2.33M

onemall 17.1k E-commerce 68.2k 894 63098 3.98M
mogu 1.7k Blog 45.2k 470 80567 4.27M

basemall 9k Supply Chain System 78.1k 1052 68751 3.07M
youlai 2.2k E-shop 26.8k 423 96888 6.88M
novel 1.1k E-reading 20.2k 170 67424 4.33M
sduoj 507 Online Judge 27.6k 477 55638 1.92M

roncoo 1.4k E-education 111.9k 1310 72424 4.75M
mall4cloud 6.5k E-commerce 45.1k 538 71193 3.78M

lines of code for service orchestration and testing scripts. This setup facilitates quick deployment
and dynamic information collection, which we expect to be useful for future research.

5.2 RQ1 — Effectiveness of Micans in Resolving Service Communications

In this section, we evaluate the effectiveness of Micans in resolving the most critical feature in
microservice systems: service communication mechanisms, specifically RPC and MBC, as addressed
in this paper. To the best of our knowledge, existing works either lack support for service commu-
nication resolution [Antoniadis et al. 2020; Chen et al. 2022] or cannot be compared because they
are proprietary internal tools not available as open-source [Wang et al. 2020; Zhong et al. 2023].
The only exception is a code smell detection tool [Walker et al. 2020]; however, upon inspecting its
source code and conducting further experiments, we discovered that it only handles outdated RPC
implementations that are absent from recent real-world microservice systems. Consequently, it
resolves none of the RPC callees in our benchmark. Therefore, in our RQ1 experiments, we focus
solely on assessing Micans’ capability to resolve service communications, evaluating both RPC
and MBC, as detailed below.

5.2.1 Remote Procedure Call (RPC). Resolving an RPC entails solving the following tuple: ⟨𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒,
𝑐𝑎𝑙𝑙𝑒𝑒, [⟨𝑎𝑟𝑔𝑖 , 𝑝𝑎𝑟𝑎𝑚 𝑗 ⟩, ...]⟩. To resolve RPC, a static analysis first reaches an RPC callsite, then
resolves the corresponding RPC callee for the callsite, and finally constructs the value flow from
the arguments at the callsite to the corresponding parameters at the callee.

Table 2 presents Micans’ results in resolving RPC communication. The “#GT” column represents
the number of real RPC tuples involved in the microservice system. We carefully examined the
source code of all microservice systems to manually collect the RPC tuples, which served as the
ground truth for our experiment. The “#TP” column (true positive) denotes the number of real RPC
tuples reported by Micans while the “#FP” indicates the number of false positive.

Understanding the Results. As shown in Table 2, Micans achieves excellent soundness and
precision, with an average recall rate (“#TP”/“#GT”) of 94.9% and an average precision rate
(“#TP”/“#TP+#FP”) of 99.8%. These promising results are attributable to Micans’ effectiveness in
addressing the three key aspects of RPC resolution: reaching RPC callsites, resolving RPC targets,
and passing parameters, as detailed below.
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Table 2. Micans’ resolution result of service communications (RPC and MBC). #GT represents the ground

truth number of real service communications in each benchmark. #TP(#FP) indicates the true (false) positives

reported byMicans. Recall is the recall rate (#TP/#GT), and Prec. is the precision rate (#TP/(#TP+#FP)).

Benchmark
Remote Procedure Call (RPC) Message-based Communication (MBC)

#GT Context Insensitivity #GT Context Insensitivity Context Sensitivity
#TP #FP Recall Prec. #TP #FP Recall Prec. #TP #FP Recall Prec.

netdisk 131 126 0 96.2% 100% - - - - - - - - -
xmall 158 153 0 96.8% 100% 4 0 0 0% 0% 0 0 0% 0%

onemall 164 159 0 97.0% 100% 3 2 1 66.6% 66.6% 2 1 66.6% 66.6%
mogu 52 52 0 100% 100% 9 9 18 100% 33.3% 9 0 100% 100%

basemall 71 67 1 94.4% 98.5% 27 22 5457 81.5% 0.4% 27 0 100% 100%
youlai 16 14 0 87.5% 100% 1 0 1 0% 0% 0 1 0% 0%
novel 14 14 0 100% 100% 2 2 0 100% 100% 2 0 100% 100%
sduoj 60 57 0 95.0% 100% 4 4 0 100% 100% 4 0 100% 100%

roncoo 55 55 0 100% 100% - - - - - - - - -
mall4cloud 57 47 0 82.5% 100% 5 5 0 100% 100% 5 0 100% 100%
AVERAGE 77.8 74.4 0.1 94.9% 99.8% 7 5.5 685 68.5% 50.1% 6.1 0.25 70.8% 70.8%

For soundness, comprehensive call graphs are crucial for reaching RPC callsites. This requires a
thorough handling of both the underlying language features (e.g., reflection) and programming
paradigms (e.g., dependency injection and web endpoint configuration). Pointer analysis offers an
effective solution by resolving these aspects on-the-fly, enabling extensive coverage of program
behavior and thereby reaching more RPC callsites. Furthermore, as detailed in Section 3, Micans
makes concerted efforts to resolve service communications (RPC and MBC) and integrate related
value flows, further expanding the coverage of RPC callsites. This positive feedback loop progres-
sively enhances the soundness of the analysis. Note that resolving RPC is crucial for static analysis,
as it can reveal numerous actual program behaviors. For instance, in the basemall benchmark,
Micans resolves 18,060 real call graph edges through call chains originating from a single RPC call
site invoked at runtime.

However, due to the complexity of real-world microservice systems, there are scenarios that
Micans is currently unable to handle. For instance, the lack of support for lifecycle processes in the
Spring Framework—such as post-initialization—results in certain RPC callsites being unreachable
in the sduoj benchmark. Additionally, in the basemall benchmark, an RPC callsite’s argument type
and its callee’s parameter type exhibit a non-subtyping relationship, which is uncommon. While the
RPC mechanism accommodates this due to the serialization and deserialization processes, Micans
currently does not address such translations, leading to a few unresolved cases.

Regarding precision, we note that developers often follow pattern-based practices when imple-
menting RPC, unlike MBC. Consequently, when conducting pointer analysis, we take full advantage
of these patterns to precisely resolve RPC targets and manage the abstract values flowing to RPC
parameters, significantly contributing to the high precision achieved.

5.2.2 Message-Based Communication (MBC). Resolving an MBC entails solving the following
tuple: ⟨𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒,𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝐾𝑒𝑦, 𝑐𝑎𝑙𝑙𝑒𝑒, [⟨𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑖 , 𝑝𝑎𝑟𝑎𝑚 𝑗 ⟩, ...]⟩, with four aspects outlined below. To
resolve MBC, a static analysis first reaches the MBC callsite, then determines the message key used
at the callsite, and identifies the message receiver (callee) based on the message key and routing
rules. Finally, it constructs the value flow from the payloads at the callsite to the corresponding
parameters at the callee. The right section of Table 2 displays Micans’ results in resolving MBC.
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Understanding the Results. For soundness, Micans effectively handles the four aspects of MBC
resolution, achieving commendable soundness by successfully resolving 49 out of 55 total MBC
callees. It’s important to note that even a single MBC callee can be significant for static analysis, as
it may uncover numerous true behaviors of the program at runtime. For instance, in the basemall
benchmark, Micans successfully resolves 17,997 real call graph edges and identifies 8,487 real
methods invoked at runtime from one MBC callee. Similar to its approach with RPC, Micans
meticulously models MBC mechanisms, and addresses underlying features to maximize the coverage
of MBC callsites, thus enabling a comprehensive analysis of the MBC mechanism. However, certain
specific scenarios remain beyond Micans’ current capabilities. For example, in the youlai benchmark,
routing rules are dynamically retrieved from the Internet at runtime, making it hard for Micans to
statically collect these routing rules, which impacts the resolution of MBC.

Regarding precision, when operating under the context-insensitive (CI) configuration, the preci-
sion of Micans is significantly compromised. This stems from the merging of message keys and
payloads passed to MBC callsites from different methods under CI. For instance, in context 𝑐1,
𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝐾𝑒𝑦1 corresponds to 𝑝𝑎𝑦𝑙𝑜𝑎𝑑1, while in context 𝑐2,𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝐾𝑒𝑦2 corresponds to 𝑝𝑎𝑦𝑙𝑜𝑎𝑑2.
With a CI approach, however,𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝐾𝑒𝑦1 becomes associated with both 𝑝𝑎𝑦𝑙𝑜𝑎𝑑1 and 𝑝𝑎𝑦𝑙𝑜𝑎𝑑2,
resulting in imprecision. Additionally, MBC routing rules are often constructed using a builder
pattern, which causes further merging of routing rules under CI. This accounts for the significant
number of false MBC callees resolved in the basemall benchmark.

However, a key advantage of Micans is that it is designed and implemented in a context-sensitive
(CS) manner, even though its formal rules in Section 4 are presented as context-insensitive for
simplicity. This means that Micans can achieve better precision by simply being run with the
CS option, without any other changes. For example, by adopting a selective context-sensitive
strategy, such as 4-object sensitivity for application code [Li et al. 2020; Smaragdakis et al. 2014; Tan
et al. 2021], Micans effectively resolves the imprecision issues by distinguishing between distinct
messages and routing rules under CS. As a result, this approach leads to an average precision
increase to 70.8% (see the rightmost column of Table 2), with only up to a 10% increase in analysis
time, adding only dozens of seconds.

5.3 RQ2 — Effectiveness of Micans in Constructing Call Graphs

As a foundational analysis, we evaluate Micans’ capability in constructing call graphs, a critical
piece of information necessary for various inter-procedural static analyses [Samhi et al. 2024;
Smaragdakis and Balatsouras 2015]. In our comparison, we include two state-of-the-art pointer
analysis tools, JackEE [Antoniadis et al. 2020] and Jasmine [Chen et al. 2022], which are specifically
designed to analyze enterprise applications featuring framework elements such as dependency
injection, lifecycle, and aspect-oriented programming. In microservice systems, business processes
initiate at web endpoints and proceed through method calls within services and cross-service
communications. Therefore, we assess the effectiveness of these tools in constructing call graphs
from each web endpoint, focusing on two primary metrics: call graph edges and reachable methods,
which are essential for evaluating the quality of call graph construction [Li et al. 2018, 2019;
Smaragdakis et al. 2011, 2014; Tan et al. 2017].

Table 3 presents our results, focusing solely on the application scope due to space limitations
(excluding "Lib/Jdk-Lib/Jdk" entries). “App-App” indicates call graph edges where both the callsite
and callee are within app methods. “App-Lib/Jdk” refers to edges where the callsite is in an app
method but the callee is in a library or JDK method. “App” denotes reachable methods within the
app code, while “Lib/Jdk” corresponds to reachable methods in the library or JDK code. The “Total”
column shows the actual number of call graph edges or reachable methods collected at runtime. The
“Recall” column represents the number of call edges or reachable methods reported by the static
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Table 3. Call graph construction results and analysis time. “Recall”, “Total” and “R/T” mean the real results

resolved by a static analysis tool, the real results collected by running dynamic analysis and the recall rate.

Benchmark Tool
Call Graph Edges Reachable Methods

Time (s)App-App App-Lib/Jdk App Lib/Jdk
Recall Total R/T Recall Total R/T Recall Total R/T Recall Total R/T

netdisk
JackEE 39

273
14.29% 3

303
0.99% 50

289
17.30% 2752

9212
29.87% 242 

Jasmine 39 14.29% 3 0.99% 50 17.30% 2543 27.61% 245 
MICANS 187 68.50% 133 43.89% 184 63.67% 3882 42.14% 117 

xmall
JackEE 186

234
79.49% 98

127
77.17% 191

230
83.04% 4169

8798
47.39% 330 

Jasmine 181 77.35% 83 65.35% 186 80.87% 3672 41.74% 346 
MICANS 205 87.61% 99 77.95% 206 89.57% 4269 48.52% 138 

onemall
JackEE 139

1745
7.97% 46

549
8.38% 164

1848
8.87% 7697

85546
9.00% 249 

Jasmine 154 8.83% 56 10.20% 176 9.52% 17906 20.93% 529 
MICANS 1565 89.68% 336 61.20% 1565 84.69% 45249 52.89% 317 

mogu
JackEE 604

1207
50.04% 1225

2051
59.73% 615

1254
49.04% 65315

152551
42.82% 1020 

Jasmine 627 51.95% 1372 66.89% 693 55.26% 67624 44.33% 1345 
MICANS 1093 90.56% 1698 82.79% 1031 82.22% 76701 50.28% 290 

basemall
JackEE 588

1438
40.89% 368

1275
28.86% 581

1541
37.70% 37118

138524
26.80% 814 

Jasmine 924 64.26% 643 50.43% 958 62.17% 70054 50.57% 996 
MICANS 1153 80.18% 878 68.86% 1282 83.19% 72884 52.61% 254 

youlai
JackEE 376

535
70.28% 256

577
44.37% 419

621
67.47% 29002

63115
45.95% 1529 

Jasmine 376 70.28% 255 44.19% 419 67.47% 29414 46.60% 1864 
MICANS 486 90.84% 391 67.76% 536 86.31% 34289 54.33% 603 

novel
JackEE 106

139
76.26% 138

332
41.57% 120

215
55.81% 23935

52224
45.83% 697 

Jasmine 106 76.26% 138 41.57% 120 55.81% 23866 45.70% 822 
MICANS 117 84.17% 204 61.45% 142 66.05% 30421 58.25% 171 

sduoj
JackEE 556

1389
40.03% 385

968
39.77% 626

1501
41.71% 36325

79628
45.62% 461 

Jasmine 556 40.03% 375 38.74% 631 42.04% 35727 44.87% 630 
MICANS 1349 97.12% 899 92.87% 1330 88.61% 46697 58.64% 194 

roncoo
JackEE 383

515
74.37% 227

287
79.09% 404

594
68.01% 23426

52744
44.41% 439 

Jasmine 383 74.37% 230 80.14% 404 68.01% 27088 51.36% 701 
MICANS 390 75.73% 264 91.99% 409 68.86% 29800 56.50% 139 

mall4cloud
JackEE 327

385
84.94% 162

291
55.67% 297

478
62.13% 22419

54535
41.11% 506 

Jasmine 318 82.60% 176 60.48% 292 61.09% 31159 57.14% 792 
MICANS 350 90.91% 190 65.29% 318 66.53% 33511 61.45% 317 

Average recall rate and analysis time (in seconds)
JackEE 53.85% 43.56% 49.11% 37.88% 629 
Jasmine 56.02% 45.90% 51.96% 43.08% 827 
MICANS 85.53% 71.41% 77.97% 53.56% 254 

analysis tool that are verified as actual, within the scope of those dynamically collected. Please
note that we dedicated substantial effort to developing a diverse set of test cases to thoroughly
exercise the core business logic dynamically. Additionally, to collect call graph edges and reachable
methods for the recall experiment, we implemented a Java Agent to gather runtime information.

Understanding the Results. Unlike the RQ1 experiment, where RPC and MBC callees were manu-
ally verified for ground truth, assessing call graph precision is particularly challenging because:
(1) a call graph edge or reachable method reported by static analysis cannot be considered false
solely because it is absent from the limited runtime data, and (2) the volume of call graph edges and
reachable methods is far greater than in RQ1, making manual verification practically unfeasible. As
a result, this experiment focuses primarily on evaluating soundness and efficiency.

Table 3 displays the detailed results. Overall, Micans achieved a significantly higher recall
rate (reflecting superior soundness) compared to JackEE and Jasmine, in terms of both call graph
edges and reachable methods across all benchmarks. Specifically, in app scope, Micans achieved
recall rates of 85.53% and 77.97%, compared to 53.85% and 49.11% for JackEE, and 56.02% and
51.96% for Jasmine. The improvement in soundness is substantial, indicating that many more actual
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Table 4. Taint analysis results of different tools. #VerifiedFlow represents the ground truth taint flows. The

numbers following each tool indicate reported taint flows (with true taint flows in parentheses). Jasmine
D

and Jasmine
F
refer to Jasmine’s Doop and FlowDroid versions, respectively. Micans and MicansCS represent

Micans with context-insensitive and context-sensitive strategies, respectively.

Benchmark #Source #Sink #VerifiedFlow JackEE JasmineD JasmineF Micans MicansCS

netdisk 163 31 10 4 (4) 2 (2) 0 (0) 23 (10) 19 (10)
xmall 110 20 15 15 (15) 1 (1) 0 (0) 19 (15) 15 (15)

onemall 85 70 58 21 (21) 4 (4) 21 (21) 58 (58) 58 (58)
mogu 240 61 59 56 (56) 9 (9) 3 (3) 609 (59) 60 (59)

basemall 328 62 36 29 (29) 1 (1) 0 (0) 194 (36) 93 (36)
youlai 103 20 17 15 (15) 1 (1) 15 (15) 46 (17) 25 (17)
novel 16 19 13 11 (11) 7 (7) 11 (11) 50 (13) 13 (13)
sduoj 87 23 40 22 (22) 1 (1) 0 (0) 289 (40) 101 (40)

roncoo 499 61 64 64 (64) 0 (0) 0 (0) 244 (64) 117 (64)
mall4cloud 102 41 23 23 (23) 0 (0) 20 (20) 69 (23) 23 (23)

TOTAL 1733 408 335 260 (260) 26 (26) 70 (70) 1601 (335) 524 (335)

runtime behaviors are successfully captured and incorporated into the static analysis. For example,
in onemall benchmark, Micans resolved an additional 62,357 real call graph edges and 28,732
reachable methods (including the “Lib/JDK-Lib/JDK” cases not shown in the paper, as explained
above) that were collected at runtime but missed by the other two state-of-the-art tools.

Micans outperformed the other two tools in soundness for two key reasons. First, Micans effec-
tively handles service communication mechanisms (as demonstrated in RQ1), enabling coverage
of RPC and MBC callees, which further increases the number of call graph edges and reachable
methods. Second, it handles programming paradigms like dependency injection (DI) more compre-
hensively, leading to greater coverage.

We also identified two main factors contributing to soundness loss in Micans. First, similar
to JackEE and Jasmine, Micans does not analyze the internal code of certain framework APIs,
as their complex implementations make analysis difficult. Instead, it models their side effects for
pointer analysis to strike a better trade-off. However, in the recall experiment, some of these APIs
may trigger dynamic proxy invocations and related callsites. While the overall side effects are
modeled, these dynamically collected callsites remain unfiltered in our recall experiment to reflect
real-world scenarios. Second, Micans does not yet fully handle certain framework features, such
as Aspect-Oriented Programming (AOP) and the Spring lifecycle, which also impact its soundness.
However, these features are orthogonal, and Micans can be extended to handle them in the future
to further enhance its soundness.

Although efficiency is not the primary focus of Micans, it runs on average 1.48X faster than
JackEE and 2.26X faster than Jasmine, demonstrating good performance. Identifying the exact
reasons for improved efficiency in such complex microservice systems among those sophisticated
analysis tools is challenging, as many factors can influence the analysis time. However, we think a
major contributor to Micans’ efficiency is its foundation on the Tai-e framework, which provides
faster analysis speeds in handling language features [Tan and Li 2023]. Additionally, Micans is
designed with a strong focus on balancing soundness and precision, as seen in its RPC resolution
approach discussed in RQ1, where it uses code patterns to resolve RPC calls as precisely as possible.
This careful trade-off also contributes to its overall efficiency.
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Fig. 8. Recall rates for taint analysis achieved by different tools across 10 real-world benchmarks.

5.4 RQ3 — Support of Micans for Analysis Client: A Case Study on Taint Analysis

Taint analysis is used to detect security vulnerabilities, such as injection attacks and data leaks, by
tracing external input or sensitive data that flows into functions potentially executing or exposing
this data. As an analysis client, taint analysis relies heavily on the result of foundational analysis.
The more program behaviors (e.g., value flows) the foundational analysis can capture, the better
taint analysis can identify vulnerabilities. To assess the effectiveness of taint analysis supported by
Micans, we follow previous work [Alqaradaghi and Kozsik 2024] to conduct a simulated injection
experiment. Specifically, we simulated vulnerabilities in real-world benchmarks by tagging string
fields of classes likely to receive external input (mainly from web requests) as sources, and injecting
sink calls into randomly chosen methods across classes handling application logic and triggered by
external requests. These sources and sinks are spread over different services. This setup maximizes
potential taint flows for comprehensive coverage.

In our comparison, we also include JackEE [Antoniadis et al. 2020] and Jasmine [Chen et al. 2022],
both of which offer advanced taint analysis based on pointer analysis. Other security analysis tools
for microservice systems [Wang et al. 2020; Zhong et al. 2023] were not included in this comparison,
as they are proprietary internal tools and are not available as open-source.

Understanding the Results. Table 4 presents the taint analysis results for each tool. Considerable
effort was invested in manually verifying the true taint flows (shown as #VerifiedFlow in the table)
formed between the given sources and sinks. Each tool’s column lists the total taint flows detected,
with verified true flows in parentheses. Micans identified all 335 taint flows, outperforming JackEE’s
260 and Jasmine’s 70, exhibiting significantly higher recall rates, as further displayed in Fig. 8.
Notably, although Micans generated over a thousand taint flows under the context-insensitive
approach—making manual verification potentially time-consuming and error-prone—the underlying
Tai-e framework [Tan and Li 2023] provides a taint flow graph that visualizes the propagation of
taint. This significantly streamlines the verification process, enabling efficient and reliable validation
of the flows within a relatively short period.

We observed that the taint flows detected by JackEE and Jasmine tend to be simpler, with call
chain lengths no greater than three. In contrast, Micans effectively detects more complex flows.
For instance, in the sduoj benchmark, Micans successfully identified a taint flow with a call chain
length of 20 across three distinct services, a level of complexity the other tools could not handle.
The primary limitation of JackEE and Jasmine in detecting complex flows stems from their limited
capacity to support certain programming paradigms, such as dependency injection (DI), and their
inability to handle service communication mechanisms. This constraint hinders their ability to
detect cross-service taint flows that Micans can capture. For example, in the basemall benchmark,
a critical sink is within the evaluateOrder method, which forms a cross-service taint flow only
if this method is invoked. However, the object invoking this method is injected into a field in
the MiniOrderController class via DI using @Resource annotation. Due to limited DI resolution
capabilities, JackEE fails to resolve this injected object and, as a result, misses this taint flow.
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Regarding precision, it is noteworthy that JackEE achieves full precision, outperforming Micans
in this regard. Our investigation revealed two main reasons for this outcome. First, JackEE’s
underlying Doop framework provides precise modeling for collections, which helps avoid precision
loss when analyzing collection-related utilities. By default, Micans uses a context-insensitive
approach, which cannot distinguish value flows that converge at collection-involved method
calls. This limitation is evident when Micans is analyzed with context sensitivity (e.g., 1-object
sensitivity), as its precision improves significantly, reducing detected flows from 1601 to 524, as
shown in the MicansCS column of the table. Second, as Micans covers a broader range of complex
taint flows than JackEE, it encounters more intricate scenarios that often result in merged value
flows within static analysis. These complexities make it challenging for MicansCS to fully reduce
false positives, even under context sensitivity. Nonetheless, Micans demonstrates a good balance
between soundness and precision in this security analysis client, detecting all 335 true taint flows
(100% recall) with a solid precision (64%, or 335 out of 524).

5.5 Threat to Validity

The primary threats to the validity of our evaluation arise from two aspects: benchmark selection
and test case construction.

First, benchmark selection may raise concerns regarding the coverage of RPC and MBC frame-
works. While it is impractical to include all categories of RPC and MBC frameworks, we mitigate this
threat by incorporating the most widely adopted ones—namely, Apache Dubbo (RPC), Spring Cloud
OpenFeign (RPC), RabbitMQ (MBC), and RocketMQ (MBC). We believe this selection sufficiently
represents mainstream usage patterns in real-world microservice systems.

Second, for the RQ2 experiment, dynamic call graphs were collected by triggering system
behaviors through test cases. Due to the inherent complexity of microservice systems, achieving
full behavioral coverage is infeasible. To mitigate this, we supplemented each benchmark’s original
test suite with dozens of additional test cases aimed at exercising core functionalities through
web-based interactions and other common entry points. We believe this strategy ensures that our
evaluation remains both representative and reliable.

6 Related Work

Pointer analysis for monolithic enterprise applications. JackEE [Antoniadis et al. 2020] and Jas-
mine [Chen et al. 2022] utilize pointer analysis to analyze monolithic enterprise applications,
computing the objects that each variable in the program may point to, enabling the derivation of
information such as value flows and call graphs that are essential for various client analyses. JackEE
addresses the unique requirements of enterprise applications by introducing methods to identify
and model application entry points, handle programming paradigms such as Dependency Injection,
and deliver a sound-modulo-analysis framework for Java data structures, including Map. These
techniques collectively enhance the soundness, precision, and scalability of static analysis within
monolithic applications. Jasmine, on the other hand, specifically targets the challenges posed by
Dependency Injection and Aspect-Oriented Programming within Spring applications. By modifying
the intermediate representation code, Jasmine improves call graph completeness. However, both
tools lack support for service communications in microservices and struggle with intricate value
flows arising from complex usage scenarios involving Dependency Injection and Web Endpoint
Configuration.

Static analysis clients formicroservice systems andmonolithic enterprise applications.CFTaint [Zhong
et al. 2023] performs compositional field-based taint analysis tailored for microservices, enhancing
scalability and precision through the use of function summaries. MSANose [Walker et al. 2020]
detects eleven microservices-specific code smells in microservice systems. Liu et al. [Liu et al.
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2022] proposed an approach for recording and replaying microservices traffic. They utilized static
analysis to identify RPC callsites, which aids dynamic analysis in capturing RPC return values.
ANTaint [Wang et al. 2020] tackles challenges from extensive libraries, native methods, and en-
terprise frameworks in FlowDroid, improving the soundness and scalability of taint analysis by
expanding the call graph and applying on-demand taint propagation for libraries. TAJ [Tripp et al.
2009] extends taint analysis to web applications by modeling core JavaEE concepts and frameworks,
and leveraging sound-modulo-analysis simplifications of data structures. IBM’s F4F [Sridharan
et al. 2011] system enhances taint analysis for framework-based web applications by supporting
the WAFL language, enabling accurate JavaEE configuration modeling. However, all these static
analysis clients focus solely on specific tasks, lacking the capability to compute comprehensive
foundational information and offering limited support for essential microservice features, such as
RPC, MBC, and Dependency Injection.
Dynamic analysis for microservice systems. Several tools use dynamic approaches to capture

runtime behaviors in microservices. SkyWalking [Wu et al. 2023] is an open-source tool for moni-
toring distributed systems, dynamically tracking method calls across microservices via runtime
instrumentation and distributed tracing. MirrorTaint [Ouyang et al. 2023], a non-intrusive dynamic
taint analysis tool for JVM-based microservices, tracks the propagation of taints in microservice
systems using a mirrored JVM space. Saioc et al. [Saioc et al. 2024] utilize dynamic analysis to detect
deadlocks during unit testing and in production for Go-based microservices. Peng et al. [Peng et al.
2022] introduce a trace-based method for measuring microservice systems. Despite their utility,
these dynamic techniques introduce additional runtime overhead and often struggle to provide the
comprehensive coverage that static analysis can achieve.

7 Conclusion

We introduced Micans, the first pointer analysis specifically designed for microservice systems. By
effectively resolving service communication mechanisms like RPC and MBC and supporting essen-
tial paradigms such as DI, Micans addresses distinct challenges in microservice-based architectures.
Our evaluation on real-world benchmarks demonstrates that Micans achieves remarkable gains
in soundness and precision trade-off over existing tools, with significantly enhanced resolution
of comprehensive call graphs and complex taint flows. These advancements underscore Micans’
potential as a foundational analysis for microservices. Future work can extend Micans to broaden
its applicability to more intricate microservice systems and a wider range of analysis clients.
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